Hannah Cloke1,2, Antje Weisheimer2,3, Florian Pappenberger2,4, Tim Palmer2,3

(1) Department of Geography, King’s College London, UK
(2) European Centre for Medium Range Weather Forecasts, Reading, UK
(3) Department of Physics, Oxford University, UK
(4) Engineering, Hohai University, China

hannah.cloke@kcl.ac.uk
florian.pappenberger@ecmwf.int

With thanks to Gianpaolo Balsamo, Emanuel Dutra & Tim Stockdale.
Hannah Cloke is funded by NERC Storm Risk Mitigation project DEMON (NE/I005366/1).
The price of hyper-resolved modelling

- Price: resources (human and technical)
- Uncertainty/Sensitivity analysis becomes more complex/impossible?
- Is the value in a single executed hydro-resolved model?
- Complexity increases by working in a coupled mode
- Can we improve a forecast by using uncertain hydrology (in contrast to increasing resolution)

Small scale processes, large scale prediction

- Land surface schemes: sophisticated in representation of mass & energy flux in surface and subsurface.
- Soil moisture is important for representing the climate system especially in summer seasons.
- Uncertainty in the atmosphere can be dealt with through the implementation of ensemble forecasts generated with perturbed initial conditions and stochastic physics.
- Uncertainty in the parameterisation of soil moisture (and other land surface) equations is not typically represented in these schemes.
- Parameterisation of soil moisture physics in land surface schemes is not straightforward. The land surface is extremely heterogeneous and difficult to parameterise. Many realistic parameter sets.

- **Land surface uncertainty could be represented by stochastic parameterisation**

Land surface hydrology parameterisation

ECMWF soils from FAO database

Within class heterogeneity – effects throughout forecast.
Soil physics uncertainty experiment: ECMWF seasonal forecasts

- 25 member ensembles
- Variations on Cycle 36R4 which is used in the operational model versions of the recently implemented System 4 (S4)
- Varying resolutions T159 / T255
- 4 month MJJA 1989-2008
- Perturbed soil physics in HITESSEL
- Also atmospheric stochastic physics turned on/off
- Comparison to GPCP corrected ERA interim
- Sensitive parameters are those which determine how active the soil hydrology is:
 - K Hydraulic Conductivity
 - α van Genuchten parameter
 - Select from known distributions

<table>
<thead>
<tr>
<th>Experiment label</th>
<th>Horizontal resolution</th>
<th>Atmospheric stochastic physics (SPE) and/or Soil Physics Perturbation (soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>159-cntrl</td>
<td>TL159</td>
<td>None</td>
</tr>
<tr>
<td>159-SPE</td>
<td>TL159</td>
<td>Only atmospheric stochastic physics</td>
</tr>
<tr>
<td>159-soil-moderate</td>
<td>TL159</td>
<td>Only soil physics perturbation (moderate perturbation)</td>
</tr>
<tr>
<td>159-soil-strong</td>
<td>TL159</td>
<td>Only soil physics perturbation (strong perturbation)</td>
</tr>
<tr>
<td>159-SPEsoil-moderate</td>
<td>TL159</td>
<td>Atmospheric stochastic physics and Soil Physics Perturbation (moderate perturbation)</td>
</tr>
<tr>
<td>159-SPEsoil-strong</td>
<td>TL159</td>
<td>Atmospheric stochastic physics and Soil Physics Perturbation (strong perturbation)</td>
</tr>
<tr>
<td>255-cntrl</td>
<td>TL255</td>
<td>None</td>
</tr>
<tr>
<td>255-SPE</td>
<td>TL255</td>
<td>Atmospheric stochastic physics</td>
</tr>
<tr>
<td>255-SPEsoil</td>
<td>TL255</td>
<td>Atmospheric stochastic physics and Soil Physics Perturbation (strong perturbation)</td>
</tr>
</tbody>
</table>

Source Data:
- **ERA40**
- **ERA-Interim**
- **GPCP corrected ERA-Interim (offline HITESSEL)**
Global land points, climatology of top layer soil moisture anomalies for JJA over the period 1989-2008.
Global land points, climatology of top layer soil moisture anomalies for JJA over the period 1989-2008.

T255 all off (yellow)

T155 all off (blue dash)

‘Control experiments’
Global land points, climatology of top layer soil moisture anomalies for JJA over the period 1989-2008.
Global land points, climatology of top layer soil moisture anomalies for JJA over the period 1989-2008.

T159 soil only

T159 soil only – moderate (blue)

‘Soil perturbation only’

T159 soil only - strong (yellow dash)
Global land points, climatology of top layer soil moisture anomalies for JJA over the period 1989-2008.

‘Combined atmospheric stochastic physics and soil perturbation’

- Higher resolution better
- Combined uncertainty experiment best
Time series correlation – 2m temperature (not anomaly)
Precipitation time series
Brier Skill Score of seasonal forecast

<table>
<thead>
<tr>
<th>expid</th>
<th>cycle</th>
<th>resolution</th>
<th>temperature</th>
<th>precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>JJA</td>
<td>DJF</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>warm</td>
<td>cold</td>
<td>warm</td>
</tr>
<tr>
<td>MME</td>
<td>CY35R2</td>
<td>T159</td>
<td>0.084</td>
<td>0.082</td>
</tr>
<tr>
<td>PPE</td>
<td>CY35R2</td>
<td>T159</td>
<td>0.004</td>
<td>0.046</td>
</tr>
<tr>
<td>SPE</td>
<td>CY35R2</td>
<td>T159</td>
<td>0.059</td>
<td>0.054</td>
</tr>
<tr>
<td>CTRL</td>
<td>CY35R2</td>
<td>T159</td>
<td>-0.024</td>
<td>-0.002</td>
</tr>
<tr>
<td>ffcf</td>
<td>CY36R4</td>
<td>T159</td>
<td>0.054</td>
<td>0.060</td>
</tr>
<tr>
<td>fjk4</td>
<td>CY36R4 LS PERT</td>
<td>T159</td>
<td>0.075</td>
<td>0.082</td>
</tr>
<tr>
<td>fg79</td>
<td>CY36R4 S4</td>
<td>T255</td>
<td>0.120</td>
<td>0.099</td>
</tr>
<tr>
<td>fgvh</td>
<td>CY36R4 S4-CTRL</td>
<td>T255</td>
<td>0.096</td>
<td>0.077</td>
</tr>
<tr>
<td>fgcn</td>
<td>CY36R4 SPP only</td>
<td>T255</td>
<td>0.107</td>
<td>0.084</td>
</tr>
<tr>
<td>fgwo</td>
<td>CY36R4 SPBS only</td>
<td>T255</td>
<td>0.099</td>
<td>0.090</td>
</tr>
<tr>
<td>fltm</td>
<td>CY36R4 LS PERT</td>
<td>T255</td>
<td>0.105</td>
<td>0.105</td>
</tr>
</tbody>
</table>

BSS (∞) for the first season using 1991-2005 as the hindcast period
Sobol sensitivities to soil parameter perturbations for global regions

2m temperature

Evaporation

Soil Moisture

Precipitation

Z500
Sobol Sensitivities (Main Effect) - Top Left Box: Stochastic Physics, bottom right: Parameter Uncertainty - Param: Temperature
Hyper resolved modelling: calibration of river parameters (example from N. America)

Bank Height
\[B = M_b \times R^{EB} \]

Channel width
\[W = M_w \times R^{EW} \]

River section
\[(M_b + M_w) \times R^{(Eb + Ew)} \]

Original parameters
New parameters
Best simulations (correlation, MAE, NSE)

New parameters set:
Bootstrapping of the linear regression.

7 sets of parameters selected for each continent:
From the bootstrap: Mean Eb, Ew (exponential coefficients)
From the bootstrap: Mean Mb Mw +/- (25%, 50%, 75%) standard deviation of bootstrap

\[R = \text{calculated from the river network map and climatology of daily runoff from the land surface model} \]
Hyper resolved modelling: Global forecasting

Forecasting example:
29/07/2010 - Pakistan
Hyper resolved modelling: HTESSEL

• Already set-up for multiple regions e.g. AMMA
• 1km/5km within next 5 years (not just scientific reasons e.g. representation of land sea and dynamic tiling)
• Coarse scale set-up will be retained
Conclusions

- Showed effects of soil physics parameter perturbations on forecasted summer surface variables using recent versions of the ECMWF seasonal ensemble forecasting system.

- Seasonal forecast variables are significantly sensitive to perturbations in soil moisture parameters.
 - Variability in 2 metre temperature, precipitation, soil moisture, (also evaporation, total column water vapour and Z500).

- Some evidence of improvement in seasonal forecasting skill:
 - Warm events in summer 2m temperature – global land points
 - Wet events in summer precipitation – global land points

- Climate behaviour of forecasts is maintained

- Not clear: increase resolution or increase uncertain representation

- ... despite this ECMWF will run a 1km land surface scheme within the next 5 years